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ABSTRACT 

Let H, G be finite groups such that H acts on G and each non-trivial ele- 

ment of H fixes at most f elements of G. It is shown that, if G is sufficiently 

large, then H has the structure of a Frobenius complement. This result 

depends on the classification of finite simple groups. We conclude that, if 

G is a finite group and  A C_ G is any  non-cyclic abel ian subgroup ,  t h e n  t he  

order  of  G is bounded  above in t e r m s  of t h e  m a x i m a l  order of a central izer  

CG(a) for 1 ¢ a E A. 

1. M a i n  r e su l t s  

It is well-known that  a finite group H has the structure of a Frobenius complement 

if and only if it can act fixed-point-freely on some finite group G (this means that  

non-trivial elements of H fix only the identity element of G). Equivalently, we 

may require that H acts fixed-point-freely on some elementary abelian group E, 

or on a linear space V over a field of characteristic zero. The purpose of this 

note is to derive a characterization of Frobenius complements in terms of almost 

fixed-point-free actions, and to study some of its consequences. For background 

on Frobenius complements and their basic properties, see [P, Chapter 3]. 

Let H, G be finite groups and suppose H acts faithfully on G. The f ix i ty  of 

this action is defined to be the maximal number of fixed points of a non-trivial 

element of H. Thus fixed-point-free actions are actions of fixity one. In [Sh] 

it is shown that,  if H acts on G with fixity f ,  then H has a soluble subgroup 

of derived length at most 3 whose index is f -bounded (that is, bounded above 
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in terms of f alone). It is clear that such a group H need not be a Frobenius 

complement; in fact it can be shown that H need not even contain a Frobenius 

complement of f -bounded index. 

However, the situation turns out to be quite different if the group G is suffi- 

ciently large (relative to H and f ) .  Indeed we have: 

THEOREM 1.1: Let H be a finite group which acts with bounded fixity on fi- 

nite groups of  arbitrarily large order. Then H has the structure of  a Frobenius 

complement. 

Note that the reverse implication is trivial: indeed, if H is a Frobenius com- 

plement, let G be a finite group on which H acts fixed-point-freely; then H acts 

with fixity one on the Cartesian powers G '~ for all n _> 1. Hence Theorem 1.1 

actually characterizes Frobenius complements. 

The proof of this result (implicitly) applies the classification of finite simple 

groups, and some other tools. It is somewhat intriguing that,  though this is a 

theorem about finite groups, the proof involves some infinite groups at a critical 

stage. To clarify this point, let H act with fixity f on a very large group G. 

In order to show that H is a Frobenius complement, it would suffice to find a 

non-trivial H-invariant section of G on which H acts fixed-point-freely. However, 

such a section need not exist (for example, consider the case where H, G are p- 

groups), Therefore, in some situations it seems essential to pass to inverse limits 

in order to obtain the desired fixed-point-free action. 

As a result, the theorem is not effective: while we prove the existence of a 

function • such that,  if a group H which is not a Frobenius complement acts on 

a group G with fixity f then IG] _< ~(IHI, f ) ,  we do not obtain any bounds on 

¢.  

However, in the special case H = Cp × C v we do obtain effective bounds, by 

using an alternative approach. As an application we prove that the order of a 

finite group is effectively bounded in terms of the fixity of the conjugation action 

of any non-cyclic abelian subgroup. More specifically we have: 

THEOREM 1.2: Let G be a finite group, and let A c_ G be a non-cyclic abelian 

subgroup. Suppose we have 

ICa(a)] _ f 

for all 1 # a 6 A. Then 

IG] ~ x~(f), 
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for some function • which may be computed effectively. 

In fact we show that  we may take 

T~(f) = f(3f'la"l-1) 2, 
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provided G is nilpotent. See also Proposition 2.1 for more detailed bounds. It is 

worth mentioning that  the bounds obtained here are not best possible: they can 

all be reduced with some more work. 

2. Proofs 

Note that  if H acts on G with fixity f ,  then it acts with fixity at most f on any 

H-invariant section of G. This observation, which follows from [HB, Chapter 8, 

10.14(a)], will be applied freely throughout this paper. 

Let us prove Theorem 1.1. Suppose H is not a Frobenius complement. As- 

suming H acts with fixity at most f on a group G, we have to bound the order 

of G. We start with a series of reductions. 

STEP 1: We may assume that  G is soluble. 

To show this, let p be a prime dividing IHI. Then G admits an automorphism 

of order p with at most f fixed points. By Hartley [H2, 1.2A] (which combines 

the Classification with a result of Fong IF]) it follows that the soluble radical S 

of G has p, f -bounded index; in fact, using Fong's arguments, it is possible to 

obtain an explicit bound on IG : S I. In order to bound IGI it therefore suffices to 

bound 1S[. Since H acts on S with fixity at most f we may replace G with 5'. 

STEP 2: We may assume that  G is nilpotent of class at most two. 

It is known that  every soluble group G has a nilpotent characteristic subgroup 

N of class at most two such that  Cc(N) -- Z(N) (see, for instance, [H1, Lemma 

1]). This means that G/Z(N) C_ Aut(N),  and so the order of G is bounded above 

in terms of the order of N. It therefore suffices to bound the order of N. 

STEP 3: We may assume that  G is abelian. 

Since G has class two, G/Z(G) and Z(G) are both abelian, and H acts on 

them with fixity at most f .  It is enough to bound the orders of G/Z(G) and 

Z(G), so the claim follows. 
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STEP 4: We may assume that,  for some prime p < f ,  G is an abelian p-group. 

Let p be a prime larger than f .  I fp  divides IGt then H acts with fixity less than 

p on the non-trivial Sylow p-subgroup P of G; hence H acts fixed-point-freely on 

P and is therefore a Frobenius complement, a contradiction. Therefore the order 

of G is not divisible by any prime larger than f .  

For p _< f let G(p) be the Sylow p-subgroup of G. Since IGI = IIp<flG(p)l it 

suffices to bound the orders of each Sylow subgroup G(p). This completes the 

reduction. 

STEP 5: The number of generators d(G) of G is bounded. 

Using additive notation, consider the elementary abelian quotient E = G/pG. 

We have to show that IEI is bounded. If p divides IHI let x E H be an element 

of order p. Since x has at most f fixed points in E and (x - 1) p = 0 in End(E)  

we have I EI < fP and we are done. 

So suppose that H is a p~-group, and consider E as an FpH-module. As such 

it is completely reducible. Since there are boundedly many isomorphism types of 

irreducible Fp H-modules, it suffices to bound the multiplicity of each irreducible 

module M in the module E. 

We claim that these multiplicities are bounded by above logp f .  Indeed, given 

M, H cannot act fixed-point-freely on M, since it is not a Frobenius complement. 

Hence some non-trivial element x E H fixes some non-trivial element of M, and 

so it fixes at least p elements of M. Hence x fixes at least pk elements of M k 

(the direct sum of k copies of M). We conclude that  M k C_ E implies k _< logp f .  

The result follows. 

STEP 6: The order of G is bounded. 

Assuming otherwise, there exists an infinite series G~ of d-generated finite 

abelian p-groups whose order tends to infinity, such that H acts on each Gi with 

fixity at most f .  We shall use an inverse limit argument to obtain a contradiction. 

Consider Gi/pGi as H-modules. Since these modules have bounded order, 

they split into finitely many isomorphism classes. By passing to a subsequence 

we may assume that GJpGi ~- M1 for all i. Similarly, we may assume that  

the modules Gi/p2G~ are all isomorphic, say Gjp2Gi c~ M2. Proceeding in this 

manner we can construct an infinite sequence of H-modules Mi with the following 

properties: 

(i) Mi has additive exponent pi. 
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(ii) Mi/pi - tMi  "~ Mi-1 (i >_ 2). 

(iii) H acts on each Mi with fixity at most f .  

Let M be the inverse limit of these modules. As a p-adic module M is finitely gen- 

erated. By the well-known structure of finitely generated modules over principal 

ideal domains it follows that M has a characteristic torsion-free Zp-submodule 

T of finite index. We claim that  H acts fixed-point-freely on T. Indeed, if 

1 ¢ a E T is fixed by some 1 ¢ x E H, then, for each i, x acts trivially on the 

subgroup generated by the image of a in M/p iM ~ Mi. As these subgroups have 

unbounded order we obtain a contradiction. 

Note that T =~ Z~ for some k. Thus H acts fixed-freely on Z~ and hence on 

as well. Therefore H is a Frobenius complement. This contradiction completes 

the proof of the theorem. | 

Note that the only use of the Classification is in step 1. 

It is natural to ask whether effective bounds can be given on the order of 

G, given H and f .  This can be done in all the steps of the proof, except for 

step 6 which uses a limit argument. The next result shows that,  at least in one 

particular case, effective bounds can nevertheless be given. 

PROPOSITION 2.1: Let H TM Cp x Cp be an elementary abelian group of order 

p2, and let G be a finite group acted on by H with fixity f .  Then 

(i) [G[ <_ ¢(p, f )  for some function ~ which may be computed effectively. 

(ii) If  G is a p-group we may take ¢(p, f )  = f(ap+l)(plogp I+1). 

Proo~ Let us first assume that G is abelian. Consider G as an H-module and 

let w E C be a primitive pth root of unity. Define 

v = a ®z z[w], 

considered as an H-module (where H centralizes w). Then it is easy to see that 

H acts on V with fixity fP (as V is isomorphic to a direct sum of p copies of G). 

Let x, y be generators of H. Consider V as an (x)-module. Then there exists a 

submodule pV c_ U c_ V which is a direct sum of eigenspaces for x; namely, 

p--1 

u=(~v~, 
i=O 

where x acts on Ui as multiplication by w~; this follows, e.g., from [HB, Chapter 

8, 10.3(c)]. Now, since y commutes with x, each Ui is also a (y)-module. So, 
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arguing as above, we may find submodules pUi C_ Wi C Ui such that  

p-1  

w~ = ( ~  w~j, 
j=O 

where y acts on Wij as multiplication by w j. 
p--1 

Let W = (~15=o Wij. 
Note that  each Wij is centralized by some non-trivial element h of H (e.g. take 

h = xJy -~ if (i,j) ~ (0,0) and h = x otherwise). It follows that  

w = C w ( L ) ,  
L 

where L ranges over all subgroups of H of order p. Since H acts on W with fixity 

at most fP we have 

[Cw(L)I < fP 

for all L. Therefore 

[W[ ~ l-I [Cw(L)[ ~ fp(p+l), 
L 

as H has p + 1 subgroups of order p. 

Since x acts on the elementary abelian p-group V/pV with fixity at most fP 

and (x - 1) p = 0 in End(V/pV) we have 

iV/pU[ < fp2. 

Similarly, ]pV/p2V[ ~ fp2. Therefore  ]y/p2y] ~_ f 2p2. B u t  p2y C W. Hence  

Iy/wI < f2p2. 

Putt ing everything together we obtain 

IYl < f 2p2" fP2+P = f 3p~+p, 

and so 

IG [ _~ IV[1/p <: f3p-i-1. 

Part  (i) of the proposition now follows, using the reductions employed in the 

proof of Theorem 1.1. So consider part (ii). 
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Let G be a p-group and let N <~ G be a maximal abelian normal subgroup. It 

is well-known that  G/N acts faithfully on N, and so 

1(7[ = [N[IG/N [ <_ IN[[hut(N)[ < IN[ d+l 

where d = d(N). Since N is abelian the above discussion yields 

IN [ <_ f3p+l. 

It also follows (using additive notation) that  [N/pN[ <_ fP and thus d(N) <_ 

p logp f .  We conclude that  

[G[ ~ f(3p+l)(plogp f+l). 

The result follows. | 

Since p-groups which do not have elementary abelian subgroups of rank two are 

necessarily cyclic or generalized quaternion, we immediately obtain the following. 

COROLLARY 2.2: Let H, G be finite groups and suppose H acts on G with fixity 

f .  Let p be a prime, and let P be a Sylow p-subgroup of H. Then one of the 

following holds: 

(i) P is cyclic. 

(ii) p = 2 and P is generalized quaternion. 

(iii) IGI < ¢(P, f )  where • is as above.  

In some cases one may require, in part (iii), that  [G[ is f-bounded. For example, 

this is the case when G is a p-soluble group whose order is divisible by p. Indeed, 

such a group G has a non-trivial characteristic p-section Q, and since P acts on 

Q with fixity at least p we have p _< f .  

Now, let G and A be as in Theorem 1.2. Then A contains an elementary 

abelian subgroup H of order p2 for some prime p. Clearly, H acts on G with 

fixity at most f .  Applying the above proposition we conclude that  [G[ _< @(p, f ) .  

But f _> [A[ _> p2. Therefore [G[ _< 9 ( f )  where 

ffl(f) = <I)(y/f, f ) .  

Theorem 1.2 is proved. 

Let us obtain explicit bounds, under the assumption that  G is nilpotent. Let 

Cp x Cp ~ H c_ A c_ G be as above. We first assume that  G is a p-group. Note 
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that  we may assume A N Z(G)  = 1, for otherwise IG[ < f .  Now, since IAt > p2 
we obtain 

.f >_ ICG(A)I > IAZ(G)I > p3. 

Thus p < f l /3 .  Applying part (ii) of Proposition 2.1 we obtain 

[GI _ f (3fl/3-kl)(pl°gp fq-1) __~ ~i /(f)  ' 

where 
~(f) = f(3fl/3+1) 2. 

Finally, suppose only that  G is nilpotent. Write G = G(p) x G(pl), where 

G(p) is the Sylow p-subgroup of G. Denote the order of G(p') by k. Since H 

centralizes G(p') we have k < f ;  furthermore, H acts on G(p) with fixity at most 

f / k .  By the above discussion we have 

]GJ <_ k . ~(f /k) < ~(f), 

as required. 
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